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Abstract. We reportab initio calculations of the electronic structures and the band line-ups of
heterocrystalline superlattices (HSLs) (3C-BN)3n/(2H-BN)2n, (3C-GaN)3n/(2H-GaN)2n and (3C-
SiC)3n/(2H-SiC)2n (n = 1, 2, 3). The band line-ups at both the (3C-BN)/(2H-BN) interface and
the (3C-SiC)/(2H-SiC) interface are found to be type II, with valence-band offsets of 0.16 eV
and 0.14 eV and conduction-band offsets of up to 1.56 eV and 1.08 eV respectively. For
the (3C-GaN)/(2H-GaN) interface, the valence-band offset is found to be almost zero, and the
conduction-band offset is about 0.4 eV. It is found that the band gaps in the HSLs decrease
rapidly with the increase of the slab thickness. This ‘abnormal’ band-gap behaviour is shown
to be due to the internal electric fields induced by the spontaneous polarizations in the 2H
structures.

1. Introduction

Recently, several theoretical studies [1–3] have been devoted to a new group of superlattices
(denoted as heterocrystalline superlattices (HSLs) hereafter), which are formed by two
chemically identical but structurally different materials, namely by the polytypes of a
material. SiC is a typical material which exhibits pronounced polytypism. It crystallizes
in more than 100 different crystalline modifications. The two most extreme polytypes are
zincblende (3C) with pure cubic stacking of the Si–C bilayers in the [111] direction and
wurtzite (2H) with pure hexagonal stacking in the [0001] direction. For this reason, SiC
has been studied [2, 3] as a typical material for forming HSLs. Besides SiC, the II–VI
compounds ZnS [4] and CdS [5] also exist in many polytypes, typically in the 3C structure
and the 2H structure. However, the electronic band structures of these polytypes are found
to be very similar and the difference in band gaps is less than 0.1 eV. So the band offsets
at the interfaces of the HSLs formed by these polytypes are negligible. On the other
hand, although the stable phase of III–V compounds BN, AlN and GaN bulk materials
have the 3C structure (for BN) and 2H structure (for GaN and AlN), 2H structural BN
and 3C structural AlN, GaN have also been experimentally observed and their properties
are beginning to be measured. These advances have come largely as a result of improved
crystal growth techniques, such as the molecular-beam epitaxy (MBE) technique. So far,
the pure HSLs formed by these polytypes have still not been successfully fabricated in a
controlled manner, and it seems to be hard to grow two polytypes together to form a pure
HSL using the experimental techniques currently available. However, because of the small
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energy differences between polytypes of a material (see, for example, [6]), single-phase
films are difficult to make, and the polytype selection is likely to be dominated by kinetic
factors. Under this condition, the interfaces in the pure HSL will occur as defects in mixed
polytype films. So, it is still very interesting to see how the two band structures line up
at the interfaces of the pure HSL. Also very interesting is the effect of the spontaneous
polarizations in the 2H compounds on the electronic properties of the HSLs. In this paper,
we reportab initio calculations of the electronic structures and band offsets of the HSLs
(3C-BN)3n/(2H-BN)2n, (3C-GaN)3n/(2H-GaN)2n and (3C-SiC)3n/(2H-SiC)2n (n = 1, 2, 3)
grown in the [111]–[0001] direction. The slab-thickness dependence of the band gaps in
the HSLs and its relation with the effects of spontaneous polarizations in the 2H compounds
are discussed.

2. Computational details

2.1. Structural details

It is well known that the 3C structure has a pure cubic stacking of the anion–cation (such as
N–B, N–Ga and C–Si) bilayers in the [111] direction, whereas the 2H structure has a pure
hexagonal stacking of the bilayers in the [0001] direction. The stacking of bilayers in a unit
cell is commonly described as ABC for the 3C structure and AB for the 2H structure. In the
[111]–[0001] direction, the two structures can be grown together to form a ‘heterostructure’.
The positions of atoms in the 3C structure and the 2H structure, as well as in the HSLs are
shown in figure 1.

Figure 1. The projected positions of atoms upon the (1120) plane in the HSLs under
consideration. The circles and the dots represent, respectively, the anion and cation atoms
in a compound. The different (1100) planes within the unit cells are denoted by A, B and C to
make obvious the stacking sequence.

For the 2H structure, there are three independent structural parameters, which are usually
taken as the lattice constanta normal to the stacking direction, the ratio ofc/a (with c

being the lattice constant along the stacking direction) and the internal relaxation parameter
u, which is defined asd/c whered is the length of the bond along the stacking direction.
The ideal values ofc/a andu are 1.6330 and 0.3750 respectively. The experimental data
[7] of u and c/a for 2H-BN, 2H-GaN and 2H-SiC are fairly close to the ideal values. In
this work, the ideal values are adopted, and the bond lengths of the 3C–2H compound pair
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are taken to be the same. The structural parameters are listed in table 1.

Table 1. The lattice constants (from [7]) and minimum corrected band gaps (in eV) of 3C-BN,
2H-BN, 3C-GaN and 2H-GaN (from [10]) and the experimental band gaps (in eV) of 3C-SiC
and 2H-SiC (from [11]).

3C-BN 2H-BN 3C-GaN 2H-GaN 3C-SiC 2H-SiC

a (Å) 3.68 2.56 4.51 3.19 4.36 3.08
c (Å) 4.18 5.21 5.05
Eg 6.4 7.8 3.24 3.65 2.39 3.33

(EX
c -E0

v ) (EK
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v ) (E0
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2.2. Details of the calculations for band structures and band offsets

In this work, the linear muffin-tin orbitals (LMTO) method within the atomic-sphere
approximation (ASA) is used to perform the self-consistent calculations for the 3C
compounds, the 2H compounds and the HSLs. This method is based on the density
functional theory (DFT) in the local density approximation (LDA). For the integration
over k space, three specialk points in the irreducible Brillouin zone are used. An internal
summation approach [8] is adopted to the higher-energy and unoccupied d orbitals. For the
calculations of the GaN HSLs, the 3d orbitals of the Ga atom are taken as the valence-band
states, since their LDA eigenvalues overlap with the N 2s bands and were found to be
important for obtaining correct ground-state charge densities.

As usual, the so-called ‘empty spheres’ are added into the interstitial regions in the
lattices of both the 3C and the 2H structures. In the case of 3C structure, all the empty
spheres have the same radius, which is taken to be the same as that of atomic spheres
(denoted byra). For the 2H structure, the situation is somewhat more complicated, since
there are two different kinds of interstitial region in its lattice. In this work, the total
volume of atomic spheres in the 2H structure is chosen to be 50% of the volume of the
unit cell, as in the case of 3C structure, and the radii of the two kinds of empty sphere
(denoted byre1 andre2 respectively) are carefully optimized so that the two kinds of empty
sphere overlap evenly with their nearest-neighbouring atomic spheres. The optimized result
is ra : re1 : re2 = 1 : 1.177 : 0.718.

The band offsets at the HSL interfaces are determined using a frozen-potential method,
which is described below. In the LMTO-ASA method, the energy-band problem can be
separated into a potential-dependent part which is represented by the values of four potential
parameters on the surface of a muffin-tin sphere, and a crystal-structure-dependent part which
is represented by the structure constants. Through self-consistent supercell calculations, we
can obtain the self-consistent potential parameters for each atomic sphere and each empty
sphere in an HSL. Then, the potential parameters can be divided into two groups which
correspond to the two material layers in the supercell. By using the two groups of potential
parameter as the final inputs, one can solve the secular matrix for the two bulk materials
separately, and obtain their valence-band maxima (VBM). Finally, the valence-band offset
(VBO) at the HSL interface can be determined by comparing the two VBM of the two
material layers. In practice, the self-consistent potential parameters of the two central
bilayers in the two slabs of an HSL are adopted to determine the VBO at the interface.
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3. Results and discussions

3.1. Band offsets

Considering the convergence problem with the frozen potential calculations for band offsets,
we have performed the frozen potential calculations using the self-consistent potential
parameters obtained from the self-consistent supercell calculations for (3C-BN)3n/(2H-
BN)2n, (3C-GaN)3n/(2H-GaN)2n, and (3C-SiC)3n/(2H-SiC)2n (n = 1, 2, 3). The results are
listed in table 2. Our calculations show that the conduction-band minima (CBM) of 3C-BN
and 3C-SiC are at theX point of the zincblende Brillouin zone, the CBM of 2H-BN and
2H-SiC are at theK point of the wurtzite Brillouin zone, and both 3C-GaN and 2H-GaN
are direct band-gap (at the0 point) semiconductors.

Physically, the band offsets at a heterointerface generally relate to the valence bands
and conduction bands of the two constituents for large layer thickness. In the case of short-
period superlattice interfaces the interaction between electronic states modifies the band
structures with respect to the thick layer limit. This leads to the convergence problem with
ab initio supercell calculations for band offsets. However, it appears in table 2 that the
VBOs calculated using the self-consistent potential parameters of the (3+ 2) HSLs and
(9 + 6) HSLs are very close to each other. The largest difference is only 0.01 eV. This
indicates that for HSLs the bulk property of bilayers is almost recovered even in the smallest
HSL system. This behaviour is due to the identical chemical character on the two sides of
the HSL interfaces.

All of the VBOs at the (3C-BN)/(2H-BN), (3C-GaN)/(2H-GaN) and (3C-SiC)/(2H-SiC)
interfaces turn out to be fairly small (0.16 eV, 0.01 eV and 0.14 eV respectively). This is
understandable since the bond characters on the two sides are almost the same. The present
result for the (3C-SiC)/(2H-SiC) interface (0.14 eV) is in very good agreement with the
result of 0.13 eV obtained from theab initio pseudopotential calculation in [3]. The relative
values of the VBO between the three HSL interfaces given by our calculations are also
consistent with the conclusion reached in [1], which states that the value of the VBO at an
HSL interface increases with the decrease of the ionicity of the bond.

A factor which influences the accuracy of the above LDA-derived band offsets is
the quasi-particle (QP) correction to LDA band gaps. However, for the majority of
heterointerfaces the influence of the QP correction on the VBO, which is really a ground-
state property, is fairly small. The work by Zhu and Louie [9] has shown that typical
values are around 0.1 eV. In the case of HSLs, the QP effects seem to be smaller. For
SiC, the work by Bechstedt and Kackell [3] showed that the maximum variation of the gap
opening with the polytype is about 0.1 eV or even smaller. Despite this, in order to obtain
reliable values of the conduction-band offset (CBO) at the HSL interfaces, in this work
we use the data of corrected band gaps reported in [10], except for the (3C-SiC)/(2H-SiC)
interface whose CBO is obtained using experimental band-gap data [11] (2.39 eV for 3C-
SiC and 3.33 for 2H-SiC). For a number of semiconductors, these data appear to be in good
agreement with experimental values of band gaps. The corrected band gaps are 6.4 eV,
7.8 eV, 3.24 eV and 3.65 eV for 3C-BN, 2H-BN, 3C-GaN and 2H-GaN respectively (see
table 1). By adding the difference in the band gaps into the VBO, we obtain CBO values
of 1.56 eV (EK

v (2H) − EX
v (3C)) for (3C-BN)/(2H-BN), 0.40 eV (E0

v (2H) − E0
v (3C)) for

(3C-GaN)/(2H-GaN), and 1.08 eV (EK
v (2H) − EX

v (3C)) for (3C-SiC)/(2H-SiC). It appears
that the band line-ups at the (3C-BN)/(2H-BN) and (3C-SiC)/(2H-SiC) interfaces are type
II with small VBOs and large CBOs. So, the valence electrons will be confined strongly
in the 3C-BN and 3C-SiC slabs. On the other hand, the VBO at the (3C-GaN)/(2H-GaN)
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Table 2. The calculated band offsets and minimum LDA band gaps (in eV) of the HSLs.
1Eg = Eg − Eg((3 + 2)HSL) is the change in band gap with respect to the (3+ 2) HSL due
to the increase of the slab thickness, obtained from the self-consistent calculations.1E′

g is the
corresponding quantity to1Eg but is obtained from equation (2). IEF= ∂VBM/∂z is the slope
of the VBM along the normal direction (in units of V̊A−1.)

(3C-BN)/(2H-BN)

(3 + 2) (6+ 4) (9+ 6)
VBO [E0

v (2H) − E0
v (3C)] 0.15 0.16 0.16

CBO [EK
c (2H) − EX

c (3C)] 1.55 1.56 1.56
Eg 5.10a 4.20b 3.30b

1Eg 0.00 −0.90 −1.80
1E′

g 0.00 −0.93 −1.86
IEF −0.148, 0.222 −0.147, 0.221

(3C-GaN)/(2H-GaN)

(3 + 2) (6+ 4) (9+ 6)
VBO [E0

v (2H) − E0
v (3C)] 0.02 0.01 0.01

CBO [E0
c (2H) − E0

c (3C)] 0.39 0.40 0.40
Eg 2.57c 1.92c 1.27c

1Eg 0.00 −0.65 −1.30
1E′

g 0.00 −0.65 −1.30
IEF −0.083, 0.126 −0.083, 0.125

(3C-SiC)/(2H-SiC)

(3 + 2) (6+ 4) (9+ 6)
VBO [E0

v (2H) − E0
v (3C)] 0.14 0.14 0.14

CBO [EK
c (2H) − EX

c (3C)] 1.08 1.08 1.08
Eg 1.99a 1.40b 0.81b

1Eg 0.00 −0.59 −1.18
1E′

g 0.00 −0.59 −1.18
IEF −0.078, 0.118 −0.077, 0.116

Eg(relaxed) 1.96a 1.36b 0.75b

1Eg(relaxed) 0.00 −0.60 −1.22
1E′

g(relaxed) 0.00 −0.59 −1.18
IEF(relaxed) −0.079, 0.115 −0.081, 0.112

a Band gap of Lc–0v .
b Band gap of Lc, Mc–0v .
c Band gap of0c–0v .

interface is almost zero, and the CBO is also fairly small, since the band gaps in both
3C-GaN and 2H-GaN are direct and very close to each other.

3.2. Band-gap behaviour

For (3C-BN)/(2H-BN) and (3C-SiC)/(2H-SiC) systems, since the band line-ups are of type-II
character, a band gap in each of them is expected which mainly arises from the narrow-
band-gap constituent (namely the 3C-BN and 3C-SiC respectively), but is reduced by the
amount of the VBO. On the other hand, the band gap in the (3C-GaN)/(2H-GaN) system
is expected to be between those of 3C-GaN and 2H-GaN, since the VBO is almost zero.
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However, from the calculated values of the band gaps in the HSLs (see table 2), one can see
that the situation is not as expected. The band gaps of the HSLs turn out to decrease rapidly
with the increase of the slab thickness, and the amount of the decrease is proportional to
the slab thickness. For the (3C-SiC)3n/(2H-SiC)2n system, we find that in the case ofn > 2
the band gap is already smaller than the smallest band gap in the constituents (namely
the band gap in 3C-SiC). The phenomenon that the LDA band gap of an HSL is smaller
than the smallest LDA band gap in the constituents was also found for (3C-SiC)/(2H-SiC)
in [3], where it was regarded as an astonishing phenomenon since it cannot be ascribed
only to the type II band-line-up character. In this paper, we show that this ‘abnormal’
band-gap behaviour is due to the macroscopic internal electric fields (IEFs) induced by the
spontaneous polarizations in the 2H structures.

Compared with the 3C structure, the 2H structure has a lower symmetry. As a result,
it is expected to possess a spontaneous polarization: since the four tetrahedral bonds are
no longer equivalent, bond-to-bond charge transfer and ionic relaxation may cause the
spontaneous polarization along the stacking direction. The spontaneous polarization leads to
an electric potential difference between the two ends of a finite crystal, along the polarization
axis. In the case of an HSL in the form of 3C–2H, the spontaneous polarization in the 3C
slab is zero by symmetry, so the spontaneous polarization in the 2H slab will lead to a
macroscopic IEF in both the 3C slab and the 2H slab. This IEF will change the energies
of the band extremes in real space and reduce the band gap of the HSL. Obviously, the
amount of this reduction is proportional to the slab thickness, as we can see from table 2.

In order to show directly the IEF and its relation with the ‘abnormal’ band-gap behaviour,
we have performed further frozen potential calculations for the three HSLs. In an HSL
supercell of form (3C)3n/(2H)2n, the 3C slab containsn unit cells of the 3C compound
and the 2H slab containsn unit cells of the 2H compound. Therefore, we can divide the
supercell of the HSL inton 3C units andn 2H units (see figure 1). The VBM of each
3C unit or 2H unit can then be calculated by the frozen-potential method using the self-
consistent potential parameters of each 3C unit or 2H unit. The line-ups of the VBMs of
the n 3C units and then 2H units will give us information about the distribution of the
average electric potential along the normal direction. The calculated results are shown in
figure 2. The scissors corrections to the LDA band gaps are already included in figure 2.

From figure 2 it can be seen that in both the 3C slab and the 2H slab the value of VBM
(or CBM) is remarkably different for different positions of the 3C unit or 2H unit. The slope
of the VBM (or the CBM) is related to the macroscopic IEFs. One may consider that the
IEFs are partly created from the piezoelectricity. It should be noted that the HSLs studied
here are lattice-matched and the structure parameters used for the wurtzite constituents are
the ideal values, which agree well with the experimental values and can also be expected to
be fairly close to the theoretical equilibrium lattice parameters obtained from total energy
minimization calculations (for SiC, see [3]). So, the piezoelectric effect in the present case
can be expected to be fairly small. From figure 2 one can find that the IEFs in (6+4) HSLs
are almost the same as those in the (9+ 6) HSLs, which indicates that quantum size effects
here are also fairly small. The IEFs can be therefore mainly ascribed to the spontaneous
polarization in the 2H slabs. Following this train of thought, the band gap in an HSL will
really decrease proportionally with the increase of the slab thicknesses. If the VBOs at the
two interfaces of the HSL are assumed to be exactly the same, then we have

1Eg = −d(3C) × IEF(3C) = −d(2H) × IEF(2H) (1)

where IEF= ∂V BM/∂z (its values are listed in table 2), thed(3C) andd(2H) are the
thicknesses of the 3C and 2H slabs respectively. In practice, the VBO values at the two
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(a)

(b)

Figure 2. The line-ups of the VBMs and the CBMs in the 3C slab and in the 2H slab of:
(a) (3C-BN)3n/(2H-BN)2n; (b) (3C-GaN)3n/(2H-GaN)2n; (c) (3C-SiC)3n/(2H-SiC)2n, (n = 2, 3).
The scissors corrections to the LDA band gaps of all constituents are already included.

interfaces may differ slightly from each other, so we use the following relation to calculate
the 1Eg

1Eg = − 1
2[d(3C) × IEF(3C) + d(2H) × IEF(2H)]. (2)

In table 2 the values of1Eg obtained from both the self-consistent calculations and
equation (2) are listed. It can be found that the two sets of results are in good agreement with
each other. Here, we would like to point out that the present calculations are performed in
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(c)

Figure 2. (Continued)

the framework of the ASA and the charge densities of valence electrons in all atomic spheres
and empty spheres are spherically symmetrized. In this case the spontaneous polarization
in the 2H structures may be overestimated. As a result, the value of the IEF in the SiC
HSL given by our calculations (see table 2) is larger than those obtained in [2] (see figure 1
of [2]). However, this factor does not change the conclusions reached here. In fact, for the
(3C-SiC)/(2H-SiC) system the value of VBO and the relative distributions of the electric
potentials in both the 3C-SiC and 2H-SiC slabs indicated by this work agree well with the
results obtained by theab initio pseudopotential calculations in [2].

3.3. Influences of interface relaxation

In the above calculations the relaxations of the interface structures are not taken into
account. Since the HSLs studied here are lattice-matched, this effect can be expected
to be fairly small. For SiC HSLs Bechstedt and Kackell [3] have performedab initio
energy minimization calculations to investigate the atomic relaxations near the interfaces.
They found that the strongest atomic relaxations happen in the interfaces between purely
cubically and hexagonally stacked layers and the atomic displacements parallel to thec

axis are negligible inside the material layers. The two Si–C bonds around the interface
3C → 2H possess lengths increased by 0.01–0.02Å, while the bonds in the interface
2H → 3C remain almost unchanged. In order to investigate the influence of the atomic
relaxations near the interfaces on the present results, we have further calculated the (3C-
SiC)3n/(2H-SiC)2n (n = 1, 2, 3) with one Si–C bond beside the interface 3C→ 2H being
increased by 0.02̊A. The results are listed in table 2. It appears that the influence of the
interface relaxation on the band-gap reduction and the IEF is really small. The maximum
change in the band-gap reduction is 0.06 eV, and the value of IEF(2H)− IEF(3C) is almost
kept unchanged. On the other hand, the influence of the interface relaxation on the band
offset turns out to be remarkable. The interface relaxation considered here only takes place
in one of the two nonequivalent interfaces and, as a result, it leads to different band offsets
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at the two interfaces (0.16 eV for the unrelaxed interface and 0.26 eV for the relaxed
interface). The VBO determined by using the self-consistent potential parameters of the
centre 3C bilayer and the centre 2H bilayer is 0.21 eV which is notably larger than the value
of 0.14 eV for the unrelaxed structure. The change in the VBO at the relaxed interface can
also be estimated by considering the change in the average potentials from one side of a
plane of displaced atoms to the other by the following equation

1VBO = (4π/A0)Z
Bd/ε∞ (3)

where A0 is the area of the plane per atom,ZB is the Born effective charge,d is the
displacement andε∞ the dielectric constant. The values ofZB and ε∞ given by the
calculations of Karchet al [12] are 2.81e and 7.27 respectively.d is equal to 0.002̊A in
the present case. Using these data we get a value of 0.16 eV for1VBO which is in good
agreement with the value of 0.12 eV given by theab initio calculation.

References

[1] Murayama M and Nakayama T 1994Phys. Rev.B 49 4710
[2] Qteish A, Heine V and Needs R J 1992Phys. Rev.B 45 6534
[3] Bechstedt F and Kackell P 1995Phys. Rev. Lett.75 2180
[4] Heine V and Cheng C 1990Geometry and Thermodynamics: Common Problems of Quasi-Crystals, Liquid

Crystals and Incommensurate Insulatorsed J C Toĺedano (New York: Plenum)
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